Wavelet-based cluster analysis: data-driven grouping of voxel time courses with application to perfusion-weighted and pharmacological MRI of the rat brain.

نویسندگان

  • Brandon Whitcher
  • Adam J Schwarz
  • Hervé Barjat
  • Sean C Smart
  • Robert I Grundy
  • Michael F James
چکیده

MRI time series experiments produce a wealth of information contained in two or three spatial dimensions that evolve over time. Such experiments can, for example, localize brain response to pharmacological stimuli, but frequently the spatiotemporal characteristics of the cerebral response are unknown a priori and variable, and thus difficult to evaluate using hypothesis-based methods alone. Here we used features in the temporal dimension to group voxels with similar time courses based on a nonparametric discrete wavelet transform (DWT) representation of each time course. Applying the DWT to each voxel decomposes its temporal information into coefficients associated with both time and scale. Discarding scales in the DWT that are associated with high-frequency oscillations (noise) provided a straight-forward data reduction step and decreased the computational burden. Optimization-based clustering was then applied to the remaining wavelet coefficients in order to produce a finite number of voxel clusters. This wavelet-based cluster analysis (WCA) was evaluated using two representative classes of MRI neuroimaging experiments. In perfusion-weighted MRI, following occlusion of the middle cerebral artery (MCAO), WCA differentiated healthy tissue and different regions within the ischemic hemisphere. Following an acute cocaine challenge, WCA localized subtle differences in the pharmacokinetic profile of the cerebral response. We conclude that WCA provides a robust method for blind analysis of time series image data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rényi entropy in data-driven analysis for pharmacological MRI

Introduction The analysis of pharmacological MRI (phMRI) traditionally depends upon the use of an appropriate input function, usually derived from blood plasma concentrations of the drug used in the experiment. There are a number of problems with this approach including the relationship between plasma and brain concentrations and the longer term effects of receptor activation. Because of this a...

متن کامل

P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images

Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2005